Receptor and Cellular Retinoic Acid Acid: Proapoptotic Genes Are Targets for Retinoic Acid Suppression of Mammary Carcinoma Growth by Retinoic
نویسندگان
چکیده
Retinoic acid (RA) displays pronounced anticarcinogenic activities in several types of cancer. Whereas the mechanisms that underlie this activity remain incompletely understood, tumor suppression by RA is believed to emanate primarily from its ability to regulate transcription of multiple target genes. Here, we investigated molecular events through which RA inhibits the growth of MCF-7 mammary carcinoma cells, focusing on the involvement of the two proteins that mediate transcriptional activation by RA, the nuclear hormone receptor retinoic acid receptor (RAR) and the cellular retinoic acid-binding protein (CRABP) II, in this process. RA treatment of MCF-7 cells did not affect cell cycle distribution but triggered pronounced apoptosis. Accordingly, expression array analyses revealed that RA induces the expression of several proapoptotic genes, including caspase 7 and caspase 9 . Whereas caspase 7 is an indirect responder to RA signaling, caspase 9 is a novel direct target for RAR, and it harbors a functional retinoic acid response element in its second intron. In agreement with the known role of CRABP-II in enhancing the transcriptional activity of RAR, the binding protein augmented RA-induced up-regulation of caspase 9 , cooperated with RA in activating both caspase 7 and 9, and amplified the ability of RA to trigger apoptosis. Surprisingly, the data indicate that CRABP-II also displays proapoptotic activities on its own. Specifically, overexpression of CRABP-II, in the absence of RA, up-regulated the expression of Apaf1 and triggered caspase 7 and caspase 9 cleavage. These observations suggest that, in addition to its known role in direct delivery of RA to RAR, CRABP-II may have an additional, RA-independent, function. (Cancer Res 2005; 65(18): 8193-9)
منابع مشابه
افزایش اثرات درمانی سیس پلاتین و 5- فلورواوراسیل بر روی ردههای سلولی AGS و KYSE-30 با استفاده از تیمار ترکیبی رتینوئیک اسید تمام ترانس
Backgrounds and Objectives: All-trans retinoic acid (ATRA) which is a derivative of vitamin A, exert fundamental effects on regulation of cell growth, differenation and apoptosis. Recently, resistance to cisplatin and 5-fluorouracil developed in gastric adenocarcinoma and squamous cell carcinoma. In this study, we investigated the combination treatment of ATRA with cisplatin and 5-fluorouracil ...
متن کاملRetinoic Acid Binding Protein and Breast Cancer PRINCIPAL INVESTIGATOR:
Retinoic acid (RA) displays pronounced anticarcinogenic activities in several types of cancer. Whereas the mechanisms that underlie this activity remain incompletely understood, tumor suppression by RA is believed to emanate primarily from its ability to regulate transcription of multiple target genes. Here, we investigated molecular events through which RA inhibits the growth of MCF-7 mammary ...
متن کاملBinding Protein-II Mammary Carcinoma Suppression by Cellular Retinoic Acid
Retinoic acid (RA) modulates cell proliferation, differentiation, and apoptosis, and is used in chemotherapy and chemoprevention in several human cancers. RA exerts its pleiotropic activities by activating the nuclear receptors, retinoic acid receptor (RAR), which, in turn, regulate transcription of multiple target genes. In cells, RA also associates with cellular RA-binding proteins [cellular ...
متن کاملCombined Effect of Retinoic Acid and Basic Fibroblast Growth Factor on Maturation of Mouse Oocyte and Subsequent Fertilization and Development
Objective Many autocrine and paracrine elements that are produced within follicular niche have been the focus of much in vitro maturation research. The present study was carried out to compare retinoic acid and basic fibroblast growth factor (bFGF) efficacy on IVM of mouse oocytes, and their further dual consumption to reach an optimal protocol. MaterialsAndMethods GV oocytes obtained from two-...
متن کاملDirect channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest.
Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid...
متن کامل